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Rotational modes in molecular magnets with antiferromagnetic Heisenberg exchange
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In an effort to understand the low-temperature behavior of recently synthesized molecular magnets, we
present numerical evidence for the existence of a rotational band in systems of quantum spins interacting with
nearest-neighbor antiferromagnetic Heisenberg exchange. While this result has previously been noted for ring
arrays with an even number of spin sites, we find that it also applies for rings with an odd number of sites as
well as for all of the polytope configurations we have investigétetlahedron, cube, octahedron, icosahedron,
triangular prism, and axially truncated icosahedrdnis demonstrated how the rotational band levels can, in
many cases, be accurately predicted using the underlying sublattice structure of the spin array. We illustrate
how the characteristics of the rotational band can provide valuable estimates for the low-temperature magnetic
susceptibility.
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I. INTRODUCTION AND SUMMARY symmetric geometric array§ing structures or polytopes
housing a finite number of spins interacting via antiferro-
The subject of molecular magnets has greatly advanced imagnetic Heisenberg exchange. Whatever the intrinsic spin
recent years due to notable progress in synthesizing bul&f the individual paramagnetic ions, or the specific geometri-
samples of identical molecular-size unité,each containing cal symmetries of the spin array, there always exist what we
a relatively small number of paramagnetic ioffspins™) refer to as rotational modes. Besides their intrinsic interest,
that mutually interact via Heisenberg exchange. An espewe show that the knowledge of these modes can, in many
cially attractive feature of many of these systems is that theases, be used to obtain good estimates of physical observ-
intermolecular magnetic interactions are utterly negligible asables, such as the magnetic susceptibility at very low tem-
compared to the intramolecular interactions. peratures. We consider in the following a finite numblenf
Already at this early stage, it is clear that even Heisenbergluantum spins, each of intrinsic sp# which in most ex-
systems of relatively modest size pose a major theoretic@#mples interact via nearest-neighbor isotropic Heisenberg ex-
challenge. A stunning example is provided by the recenththange. We assume that all nearest-neighbor pairs of spins
synthesized molecular maghefMo,.Fey, where the interact with the same coupllng constant, one which favors
30 F€" ions(spins2) occupy the sites of an icosidodecahe- antiferromagnetic ordering. B denotes the total spin opera-
dron. The total dimension of the Hilbert space for this spintor, the operatonS2 commutes with the Hamilton operator,
system is a staggering 36 namely, of the order of and thus we can structure the set of all energy eigenvalues
Avogadro’s number, utterly precluding the calculation of theaccording to the total spin quantum numliSextending up
energy eigenvalues and eigenvectors on any imagined cote S,,,=Ns. A key point of the present work relates to the
figuration of immense, ultrafast computers. This is the consubset of minimal energies for the allowed valuesSofVe
text for our exploration in this paper of a generic feature ofmay summarize our findings as followathatever the details
the low-lying excitation energies of a finite number of spinsof the system, this subset of minimal energies appears to
interacting via antiferromagnetic Heisenberg exchange. Witldefine what we shall refer to as a “rotational band,” i.e., is
the knowledge of the low-lying excitations, one can establistwell approximated by a dependence on S of the fofi® S
the very low-temperature properties and in some cases evenl). We choose the term “rotational band” to indicate that
arrive at an estimate of the temperature range for the manthis portion of the spectrum is similar to that of a rigid rotor.
festation of essentially quantum behavior. This is illustratedSimilar behavior is commonly found also in nuclear and
in the present paper fdMo,.Feyo}; we arrive at an expres- atomic physics.
sion for the temperature dependence of the weak-field sus- The occurrence of a rotational band has been noted on
ceptibility at very low temperatures. We also provide an esseveral occasions for an even number of spins defining a ring
timate for the temperature above which this system camstructure. The minimal energies have been desctithéds
reliably be described by the classical Heisenberg model, a fdifollowing the Landeinterval rule.” However, we find that
more practical theoretical platform than the correspondinghe same property also occurs for rings with an odd number
guantum model. Indeed the classical Heisenberg model isf spins as well as for the various polytope configurations we
currently being exploited so as to provide detailed quantitahave investigated, in particular for quantum spins positioned
tive prediction§’ for {Mo,Fey,} that are being compared to on the vertices of a tetrahedron, cube, octahedron, icosahe-
the results of ongoing experimerfts. dron, triangular prism, and an axially truncated icosahedron.
In this paper, we focus on a generic feature of highlyRotational modes have also been found in the context of
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FIG. 1. Energy spectra of antiferromagnetically coupled Heisenberg spin(hinggontal dashgsHere and in all subsequent figures, the
crosses connected by the dashed line always represent the fit to the rotational band accordiri§) fsvBigh by definition matches both
the lowest and the highest energies exactly. On the left-hand-side, the dashed line reproduces the exact rotational band, whereas on the
right-hand-side, it only approximates it, but to high accuracy. The solid line on the right-hand-side corresponds to the approximation of Eq.
(10).

finit_e triangular lattices of spin-1/2  Heisenberg s,(u)|s(uym(u))y=m(u)|s(u)m(u)). 2)
antiferromagnet$?*3

Using only the sublattice structure of the various spin ar-The sum in Eq.(1) runs over all distinct interacting pairs
rays, which is provided by symmetry arguments, we are abléu,v) of spins at positionsi andv. For a closed ring with
to approximate the coefficient of 18 S+ 1) dependence to nearest-neighbor interaction, the indexould simply equal
good accuracy. Our method describes in general how thid+ 1, and the sum is understood to fulfill the cyclic boundary
approximate coefficient can be deduced. We can thereforeondition.
obtain an estimate of the ground-state energy as well as the
low-lying rotational excitations. It is clear that at low tem- A. Heisenberg square
peratures, these minimal energies provide the major contri- One of the few svstems that DOSSESSES a fOorousS hara-
bution to thermal averages. This enables us to discuss ﬂl?olic rotational bandyis the Heisgnber 9 P:
low-temperature behavior of quantities such as the magnetic: _ : g square, 1.€., a fng
susceptibility without knowledge of the complete eigenvaluewIth N=4. Because the Hamilton operator can be rewritten
spectrum. We illustrate these considerations for the speci

case of{ Moz, Fes). He—J(-& & S.=3(1)+&3
The concept of the rotational bands is useful even in cases - (57524 Sims(1)+5(3),
whereS2 does not commute with the Hamilton operator, if §24: §(2)+5(4), ®)

the symmetry-breaking terms are small and can be treated

perturbatively. The eigenstates and eigenenergies of the uith all spin operator§2, ~§§3 and§§4 commuting with each
perturbed(rotationally symmetric Hamilton operator can be other and withH, one can directly obtain the complete set of
classified by their total spin quantum numb& and eigenenergies, and these are characterized by the quantum
symmetry-breaking terms like on-site anisotropy or dipolarnymberss, Si3, andS,,. In particular, the lowest energy for

interactions will lead to energy correctioHs. a given total spin quantum numb8roccurs for the choice
The layout of this paper is as follows. In Sec. Il, we g =5, ,=2s,

present our numerical findings for various Heisenberg spin

systems and motivate in Sec. Il how the rotational band is Esmin= —J[S(S+1)—2X2s(2s+1)]=E;—JIS(S+1),
connected to the topology of spin sites. Finally in Sec. 1V, (4)
we discuss some implications of the rotational band o

physical observables MWhere Eo=4s(2s+1)J is the exact ground-state energy.

The various energieEs n,, form a rigorous parabolic rota-
tional band of excitation energies. Therefore, these energies
Il. ROTATIONAL BANDS coincide with a parabolic fit(crosses connected by the
pashed line on the left-hand side of Fig.dassing through

the antiferromagnetic ground-state energy and the highest
energy level, i.e., the ground-state energy of the correspond-
ing ferromagnetically coupled system.

The Hamilton operator for the isotropic Heisenberg mode
in the absence of an external magnetic field reads

H=—2J 2) S(u)-8(v), Yuis(u)=s, (1)
(u,v

. . . . . B. Heisenberg rings withN>4
wherelJ is the exchange interaction with units of energy, and

J<0 results in antiferromagnetic coupling. The vector op- We have calculated all energy levels by diggonalii’?ng
erators§(u), underlined with a tilde, are the single-particle the Hamilton matrix for a variety of rings with different val-

spin operators with eigenvalue equations ues ofN ands. All of these systems exhibit a rotational band,
irrespective of whethel is even or odd, and for both integer
(S(W)?|s(uym(u))y=s(s+1)|s(uym(u)), and half-integer values of That is, the subset of minimal
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energies is well approximated by a dependenc&dmat is
proportional toS(S+1), i.e., follows the Landenterval
rule&-11

details of the spectra differ, the overall appearance persists,
and in particular the minimal energies define a rotational
band.

D(N,s)

N D. Heisenberg polytopes

Esmin~Ea—J S(S+1). (5

In order to illustrate the generality of the rotational band,
We determine the parametdfs andD(N,s) so that formula Wwe provide several additional examples: the tetrahedron, the
(5) reproduces our calculated values of the lowest and highcube(Fig. 4), the octahedrofFig. 5, left-hand sidg and the
est energies of the rotational band, i.e., the ground-state effosahedron(Fig. 5, right-hand side As in the previous
ergy of the antiferromagnetic system and the ground-statéases, the displayed energy eigenvalues are calculated by
energy of the corresponding ferromagnetic system. In alhumerical diagonalization, except for the tetrahedron and oc-
cases we have observed that if deviations occur the fittingghedron, which can be solved analytically.
parabola of Eq(5) lies below the rotational band. Use of Eq.  The tetrahedron of spins is a worthy textbook problem:; it
(5) is illustrated in Fig. 1(right-hand sidg for the caseN can be solved with a few lines of algebra because the Hamil-
=6 ands=3%. The figure shows the complete spectrumton operator simplifies to
(horizontal dashgsas well as the fit according to Eg5)
(crosses connected by a dashed)lir@ne observes that the (7)
fit very nearly matches the energies of the rotational band,
meaning that the Landiterval rule is obeyed with high Therefore, the spectrum of this system consists exclusively
accuracy. As a second example, spectra are shown for ring¥ a rotational band.
of five spins withs=2 (Fig. 2, left-hand sideand s=5/2 The case of the octahedron is similar to the Heisenberg
(Fig. 2, right-hand side Inspecting the low-lying excita- square; the Hamilton operator can be written as
tions, one notices that the rotational band for odd rings is not
separated from the remaining states as much as it is for even
rings. This remark also pertains to other, larger odd values of

N whereS,,Sg,Sc are the sums for pairs of spins situated at

. In Table |, we cqllect the coefficient®(N,s) for the opposite vertices of the octahedron, aéa'els the total spin.
rings we have investigated. In all cas€gN,s)~4. For the i 2 22 a2 29 i
The spin operator§<, S5, Sg, and Sz commute with each

odd rings, the values dD(N,s) may be somewhat smaller ) _ ;
other and withtH. Thus, the eigenvalues &f may be written

than 4. We will dwell on this fact in Sec. Ill. 3 '
It should be noted that in the largédimit, the rotational down at once, and they are given in terms of the quantum

levels (5) become degenerate for certain systems, e.g., for
rings with half-integer spin. Therefore, excitations within the
rotational band should not be confused with magnons.

H=—J(S*-48%).

H=-J($-Si-S5—-S2). ®

TABLE I. CoefficientsD(N,s) for various Heisenberg rings, to
be used in conjunction with Ed5).

N
C. Frustrated spin rings s 5 6 7 8 9 10
Even for spin rings with next-nearest-neighbor interac- .

tion, the rotational band persists. The energy spectra of Fig. 3 25 4 2.333 4 3 4 corﬁéngtﬂree
have been calculated for the Hamilton operator 3618 4 3.802 4 3.879 4 Refined
N N conjecture

H=—2J,> §(U)-s(u+1)—2J,0n> S(U)-S(u+2), 3 3.8975 4.3028 4.2982 4.5209 4.5355 4.6770

u=1 u=1 1 3.8437 4.1764 4.1430 4.2971 4.2957 4.3809

(6) 2 37501 4.1190 4.0174 4.1977 4.1443 4.2514

where all spins have been taken todge)=3. In Fig. 3, we § 3.7399 4.0896 39772 4.1482 4.0886 4.1881

5 3.7103 4.0718 3.9368 4.1185 4.0420 4.1500

display spectra for a ring wittN=6 ands=3 for various
ratios of the two coupling constandg, andJ,,,,. Although
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numbersS, S,, Sg, andSc. Therefore, the lowest energy sublattice structure of the spin array. As an introductory ex-
for a given value ofSis achieved ifSy=Sg=Sc=2s, and ample, we repeat the basic ideas for Heisenberg rings with an
its value is given by even number of spin sité$.Such rings are bipartite and can
. be decomposed into two sublattices, labefednd B, with
Esmin= —J[S(ST1)=3x2s(2s+1)]. ©) every second spin belonging to the same sublattice. From

This is another one of the few cases where the minimal enelassical spin dynamics, it is known that the classical ground
ergies define a rigorous rotational baisee Fig. 5, left-hand  state, sometimes called the classicaeNgtate'? is given by
side). an alternating sequence of opposite spin directions. On each

The remaining examples of the cultEig. 4 and the sublattice, the spins are mutually parallel. Therefore, a quan-
icosahedrorn(Fig. 5, right-hand sideillustrate the behavior tum trial state, where the individual spins on each sublattice
of the gaps between the rotational band and the remainingre coupled to their maximum valu& = Sg;=Ns/2 could
eigenenergies. It is worth noting that the rotational band obe expected to provide a reasonable approximation to the
the icosahedron is not as well separated from higher energyue ground state, especiallysfassumes large values. Such
levels as it is for the cube. This behavior is similar to thattrial states are called N¢like. For rings with everN, the
discussed above for even and odd rings. Systems that aspproximation to the respective minimal energies for each
bipartite, i.e., can be subdivided into two sublattices withygjye of the total spirS= Sy+ Sg is found to be given by
interactions only between spins of different sublattigasys o
with evenN and the cubg show a significant gap, whereas Eapprox_ _ 4 NS(NS+ 1
systems that are nonbipartite appear to show much smaller Smin ™ N 212
gaps® The latter systems are often also called frustrafed. _ o
Two other cases we have studied, the equilateral-triangldNiS @pproximation exactly reproduces the energy of the
prism and an axially truncated icosahedron, conform withlighest-energy eigenvalue, i.e., the ground-state energy of

S(S+1)—2 . (10

these trends. the corresponding ferromagnetically coupled systeS (
=Ns), since the true eigenstate with all spins assuming their
IIl. CONJECTURE ON ROTATIONAL BANDS largestm quantum numbem=s is a linear combination of

Neel-like states. For all smalle®, the approximate minimal
energy EER2* is bounded from below by the true one
It turns out that an accurate approximate formula for the(Rayleigh-Ritz variational principle The solid curve dis-

coefficientD(N,s) of Eq. (5) can be developed using the plays this behavior for the example Nf=6, s=3 in Fig. 1

A. Heisenberg rings; evenN

T
20 [ cube, s=1, 1 40 [ cube, s=3/2, AF = ]
W= === § ) Wie==amlB ]

[ S _g ] = 0 =m I ] FIG. 4. Energy spectrum of antiferromagneti-
D = D iI = cally coupled Heisenberg cubes. The solid lines
oS ) 208 EEE=== ] correspond to the approximation of Eg$2) and
“20= ] —= E i i (13), i.e.,D=6.
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(right-hand sidg The entries in Table | provide additional the cube, which hall,=12, it givesD =6. That these values
numerical support for the approximati@(N,s)~4 adopted of D provide a very good estimate of the coefficieDtEN,s)
in Eqg. (10). For each fixed evelN, the coefficientD(N,s) is demonstrated in Fig. lright-hand sidg for a ring with

approaches 4 with increasirsg N=6 ands=2, and in Fig. 4 for cubes wits=1 ands
The approximate spectrum, EQ.0), is similar to that of =3/2.
two spins,S, and Sz, each of spin quantum numbhis/2, If there are several possible partitions into sublattices ac-

that are coupled by an effective interaction of strengttivd ~ cording to various symmetries of the spin array, one can
Therefore, one can equally well say that the approximaté&afely choose that one that leads to the lowest approximate
rotational band considered in E(L0) is associated with an ground-state energy, because this energy is bounded from

effective Hamilton operator below by the true ground-state energy. For spin arrays with
low symmetry, the gained approximation can be rather poor.
approx_ __ ﬂ 20 &2 & This is, for instance, the case for rings of oddThe classi-
HEP= [S°—SA—Sgl, (13) :
N cal ground-state structure would suggest as many sublattices

) PR . ) as spin sites, which leads to rather small coefficidhtas
where the two sublattice spir ,Ss assume their maximal enicted in Table [“simple conjecture’). A closer inspec-
value Sy=Sg=Ns/2. This result agrees with that obtained {jon shows that it is possible to obtain a better approximation
by.a different prqcedure, which utilizes a Fourier represenis gne defines the approximate rotational band by the pa-
tation of the Hamilton operatdf. rabola passing through the classicakiNground-state energy

_In retrospect, one realizes that all we needed for ring§eye| and through the ground-state energy level of the corre-
with evenN to arrive at Eq(10) was a sublattice structure in sponding ferromagnetic system. For rings of dtidhe clas-
order to build Nel-like trial states. The sublattice structure g5 Neel ground-state energy is

can be deduced from the classical ground state or the sym-
metries of the spin array, which manifest themselves in the Eneer= —2INs*cog (N—1)w/N], (14

classical ground state. In the case of rings with an even numys can be shown using spin coherent stdtéfhis leads to
ber of sites, the symmetry is the cyclic shift symmetry: Sub-the “refined conjecture” for odd rings; see Table I. For other
lattice A can be transformed into sublatti@ by a single  spin arrays, such as the icosahedron, it may be simply im-
shift. These considerations lead us in the foIIOWing SUbseCpossib|e to derive a good approximation for the coefficient

tion to a generalization for other systems. D(N,s); nevertheless, the minimal energies always form a
rotational band according to E¢p).
B. Conjecture Using Egs.(12) and(13), one can find an approximation

We assume that the Heisenberg spin system can be gfor the rotational band for larger polytopes such as the icosi-
composed intd\,, sublattices according to a symmetry trans_dodecahedrén,_ whlc_h characterizes the S|te_s of the 30 para-
formation. The spins of each sublattice are to be coupled t§'gnetic F&" ions in the recently synthesized molecular
their maximal valuesSs,;=Ns/N,. Then we conjecture that magnet {Moy,Fey}. The related Hilbert space has a dimen-

H N_ r30 H H ’
the energies of the rotational band can be approximated asion Of (25+1)7=6, which is of the order of Avogadro’s
number. Numerical diagonalization of the Hamilton matrix is

totally out of reach. Nevertheless, we can estimate both the
ground-state energy and the form of the rotational band. The
icosidodecahedron, consisting of 20 triangles and 12 penta-
gons, has threefold rotational symmetry and thus three sub-
lattices. Assuming nearest-neighbor interaction, we héye
=60. Thus, one ends up with

D
ESmin = — I [S(STD-NeSa(Sst )], (12

where the parameté is to be fixed by the requirement that
the energyEero= — 2JN,s? of the corresponding ferromag-
netic ground state, for whicB=Ns, is reproduced exactly.

The energyE:, depends only on the number of distinct

bondsN, . Therefore, the coefficierd is given by E%ﬂﬂ?ﬁ": B gS(S+ 1)+60Js| s+ E)' (15)
Np 1
DZZW T/Nsl (13)  The threefold rotational symmetry of the spin array is also

S _ _ reflected by the structure of the classical ground state, thus it
which is independent of. For rings with an even number of is no surprise that approximate quantum and classical Ne
sites, this formula reproduces the valDe=4, whereas for ground-state energies
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FIG. 6. Zero-field magnetic susceptibility of the antiferromag-  FIG. 7. Zero-field magnetic susceptibility ¢fo,,Fes} calcu-
netically coupled Heisenberg spin ring with=6 ands=3. The lated using Eqs(15) and(18). The dashed curve is obtained using
solid curve displays the full quantum solution; the dashed curve®nly the two lowest levels and the solid curve using all levels of the
correspond to approximatiofl8) upon including the contributions approximate rotational band. The classical result is given by the
of rotational levels up t&=1, S=3, andS=15. dash-dot line.

Inspecting Fig. 6, one sees how the rotational band contrib-
approx__ 1 P

Eomin —60IS(s+15),  Eneer= 60)s° (16) utes to the susceptibility in the case of the ring wil-6
differ from each other only by 4% for the rather high ands=3. The rise at low temperatures is mostly determined
_5

=3. by the first excited level of the rotational bafahshed curve

labeled ).
V. LOW-TEMPERATURE THERMODYNAMIC As our final example, we show in Fig. 7 the result using
PROPERTIES Egs. (15 and (18) for the low-temperature behavior of the

zero-field susceptibility fo{f Mos,Fesq}t. For this systemdg
It is obvious that at low temperatures, the rotational band=min{(2S+1)?,(25+1)(76—S)}. The susceptibility (solid
energies provide the dominant contribution to thermal avercurve rises very rapidly with increasing temperature to the
ages, especially if these energies are well separated from thesulf? for the classical Heisenberg modelash-dot curve
remaining energy levels. This suggests, for example, that wihspecting Eq(15), one can understand that the rapid rise is
approximate the partition function by due to the small energy difference between ground and first
excited state and, in particular, because of the small coeffi-
. @7 cientJ/5 of theS(S+ 1) term. In addition, thé&s=1 level of
the approximate rotational band is ninefold degenerate and

wheredg is the degeneracy factor of the eigenenergies bethus’ the rapid rise iry, commences at very low tempera-

longing to the rotational band, ar,=J(D/N)NqSe(S., tures. Thus, fo{Mo,,Fest, which has a nearest-neighbor

+1) according to Eq(12). For bipartite systems, i.e., sys- coupling constafitof J/ks=~0.75K, we expect that weak-

tems that can be subdivided into two sublattices according tgeld susceptibility measurements will confirm the rapid de-

the theorem of Lieb-Schultz-Matti?° ds=2S+1. For Crease on cooling, which is a genuine quantum feature and

nonbipartite systems, not much is known about the dege ngror\)/\i?rsir(])tig ':<he classical counterpart, only at temperatures

eracy. First investigations show that it is possible to establis
rules for the degeneracy of certain states also for nonbipartite ACKNOWLEDGMENTS
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